
Appendix C. Robot Controller System Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,

described in Chapter 10, to a robot controller system. The specification for this system

consists of a set of hierarchically arranged data/control flow diagrams, one state-transition

diagram, and a textual description. The specification, taken from Gomaa.1 [Gomaa93, Chapter

23], uses RTSA without COBRA restrictions. From this specification, CODA generates,

with the help of an experienced designer, two designs. One design uses the default target

environment description, while the second design uses a target environment description

where no message queuing services are available. This illustrates how multiple designs

can be generated from the same input specification. The case study then shows how a

small change to the specification, a change that aligns the specification more closely with

COBRA restrictions on the use of RTSA notation, can reduce the number of

consultations that CODA must take with the designer, while still leading to the same

design.

C.1 Robot Controller System, Version 1

Figure 51 shows the context diagram for Gomaa’s robot controller system. As in

the previous case study, see Appendix B Table 31, the context diagram is annotated with

information inferred or elicited as a result of applying CODA to analyze the specification.

1 Another treatment of the same robot controller problem is given by Nielsen and
Shumate. [Nielsen88]

510

Perform
Robot
Control

0

Control Panel
Buttons and

Switch
[Device @]

Control Panel
 Lights

[Device @]

Actuators
[Device @]

Sensors
[Device @]

Axis
Motors

[Device @]

Control Panel
Buttons

and
Switch Interrupt

[Interrupt =]

Panel
Input

[Input =]
[Max. Rate .5

per sec. *]
Control Panel

Lights Interrupt
[Interrupt =]

[Max. Rate 1000 per sec. *]

Panel Light Signals
[Output =]

Actuator
Settings

[Output =]

Sensor
Readings
[Input =]

Axis
Settings

[Output =]

Axis Input
[Input =]

[Max. Rate 100
per sec. *]

Axis Motor Interrupt
[Interrupt =]

Figure 51. A
nnotated C

ontext D
iagram

 for R
obot C

ontroller System

The context diagram differs from Gomaa’s context diagram in only two ways. First,

events arriving from external devices are shown in Figure 51 as dashed, directed arcs.

These events are not shown in Gomaa’s context diagram, but can be inferred to exist from

reading the accompanying textual specification. Second, the six axis motors that control

the robot arm are depicted explicitly in Figure 51. Gomaa’s context diagram shows a

single axis motor but the accompanying textual specification indicates that six axis

motors exist.

C.1.1 Analyzing the Specification

Once the data/control flow diagram hierarchy is flattened, the entire data/control

flow diagram for the robot controller system consists of twenty-six nodes (18

transformations, 5 terminators, and 3 data stores) and 48 arcs (28 data flows and 20 event

flows). The designer asks CODA to classify concepts on the data/control flow diagram,

to elicit any additional information required, and to verify that concepts within the

specification satisfy appropriate axioms.

C.1.1.1 Classifying Concepts in the Specification

Initially, CODA consults with the designer about the nature of the terminators.

After the designer indicates that all terminators in the specification are devices, concept

classification proceeds without further consultation until stage four, where CODA

requires additional information in order to determine a classification for four data

transformations. In one case, CODA needs to know whether a triggered function, Change

Program, completes during the triggering transition. In a second case, CODA asks the

511

designer to confirm, or override, a tentative classification for a transformation, Process

Actuator Command, as a synchronous function. In the remaining two cases, Process

Motion Command and Receive Acknowledgement, CODA requests that the designer

provide information about the time required to execute each transformation. CODA

considers two factors. First, will the time, no matter how brief, required to execute a

transformation unduly delay an invoking transformation? This might occur, for example,

if the invoking transformation receives external events that could be missed while waiting

for the invoked transformation to complete. A second factor, considered only if the first

factor is not an issue, gauges the amount of time needed to complete the algorithm

embodied within a transformation. If substantial time is needed to execute the algorithm,

then CODA classifies the transformation as an asynchronous function. In the robot

controller case study, the designer indicates that neither of the two transformations,

Process Motion Command and Receive Acknowledgement, unduly delay the invoking

transformation nor require substantial execution time. From these additional facts,

CODA classifies the transformations as synchronous functions.

C.1.1.2 Eliciting Additional Information and Verifying Concepts

Once concept classification is completed, CODA determines that several

additional facts are needed about some of the newly classified concepts. Two timers

require periods and three asynchronous inputs or outputs require maximum rates. CODA

then asks the designer for any specification addenda. In this case study, the designer

specifies no addenda. CODA does not ask the designer about locked-state events because

512

this addendum was included when the input specification was entered with the text editor.

Only one event, Ended, see the state-transition diagram in Figure 54, was specified as a

locked-state event. This addendum was entered ahead of time to show that CODA does

not attempt to elicit information that already exists. The designer finishes adding

information to the specification by changing the cardinality of the Axis Controller from

one to six. Next, the designer asks CODA to verify that all concepts are classified

completely and that all axioms are satisfied. CODA determines that classifications are

complete and that axioms are satisfied.

C.1.1.3 Annotated Data/Control Flow Diagram

The results from analyzing the specification are presented in the form of an

annotated data/control flow diagram, shown in Figures 52 and 53, for the robot controller

system. Figure 52 shows the initial decomposition of the system transformation, Perform

Robot Control, from the context diagram. This decomposition differs from that provided

by Gomaa in only one detail. Gomaa depicts a single transformation, Process

Sensor/Actuator Command, which is shown in Figure 52 as two, distinct transformations,

Process Actuator Command and Process Sensor Command. This decomposition allows

an illustration of the use of labels on data flows to and from data stores. In addition, this

decomposition more accurately reflects the processing described in the textual

specification for the robot controller system.

The classifications assigned and the additional information elicited by CODA are

shown in the annotations for each specification element in Figure 52. Only one

513

514

P
ro

ce
ss

R
ob

ot
C

om
m

an
d

1.
0

G
en

er
at

e
A

xi
s

C
om

m
an

d
4.

0
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

In
te

rp
re

t
P

ro
gr

am
S

ta
te

m
en

t
2.

0
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

P
ro

ce
ss

M
ot

io
n

C
om

m
an

d
3.

0
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

A
xi

s
C

on
tr

ol
le

r
5.

0
[A

sy
nc

hr
on

ou
s

D
ev

ic
e

IO
O

bj
ec

t =
]

R
ec

ei
ve

A
ck

no
w

le
dg

em
en

t
6.

0
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
]

P
ro

ce
ss

A
ct

ua
to

r
C

om
m

an
d

8.
0

[S
yn

ch
ro

no
us

F
un

ct
io

n
?]

A
ct

ua
to

rs
9.

0
[P

er
io

di
c

D
ev

ic
e

O
ut

pu
t O

bj
ec

t =
]

S
en

so
rs

10
.0

[P
er

io
di

c
D

ev
ic

e
In

pu
t O

bj
ec

t =
]

S
en

so
r/

A
ct

ua
to

r
D

at
a

[D
at

a
S

to
re

 #
]

R
ob

ot
P

ro
gr

am
[D

at
a

S
to

re
 #

]

P
ro

ce
ss

S
en

so
r

C
om

m
an

d
7.

0
[S

yn
ch

ro
no

us
F

un
ct

io
n

=
]

P
an

el
 In

pu
t

[In
pu

t =
]

[M
ax

. R
at

e
.5

pe
r

se
c.

 *
]

P
an

el
Li

gh
t

S
ig

na
ls

[O
ut

pu
t =

]

C
on

tr
ol

 P
an

el
B

ut
to

ns
 a

nd
S

w
itc

h
In

te
rr

up
t

[In
te

rr
up

t =
]

C
on

tr
ol

 P
an

el
Li

gh
ts

 In
te

rr
up

t
[In

te
rr

up
t =

]
[M

ax
. R

at
e

10
00

pe
r

se
c.

 *
]

S
ta

rt
 P

ro
gr

am
C

om
m

an
d

[S
tim

ul
us

 =
]

M
ot

io
n

C
om

m
an

d
[S

tim
ul

us
 =

]

M
ot

io
n

B
lo

ck
[S

tim
ul

us
 =

]

A
xi

s
A

ck
no

w
le

dg
em

en
t

R
ec

ei
ve

d
[S

ig
na

l =
]

M
ot

io
n

A
ck

no
w

le
dg

em
en

t
[S

tim
ul

us
 =

]

A
xi

s
B

lo
ck

[S
tim

ul
us

 =
]

A
xi

s
A

ck
no

w
le

dg
em

en
t

[S
tim

ul
us

 =
]

A
xi

s
In

pu
t

[In
pu

t =
]

[M
ax

. R
at

e
10

0
pe

r
se

c.
 *

]

A
xi

s
S

et
tin

gs
[O

ut
pu

t =
]

A
xi

s
M

ot
or

In
te

rr
up

t
[In

te
rr

up
t =

]

S
en

so
r

T
im

er
[T

im
er

 =
]

[P
er

io
d

.1
 s

ec
s.

 *
]

S
en

so
r

R
ea

di
ng

s
[In

pu
t =

]

S
en

so
r

D
at

a
[S

to
re

 =
]

A
ct

ua
to

r
D

at
a

[R
et

rie
ve

 =
]

A
ct

ua
to

r
S

et
tin

gs
[O

ut
pu

t =
]

A
ct

ua
to

r
T

im
er

[T
im

er
 =

]
[P

er
io

d
.8

 s
ec

s.
 *

]
P

ro
gr

am
S

ta
te

m
en

t
[R

et
rie

ve
 =

]

A
ct

ua
to

r
D

at
a

[S
to

re
 =

]

S
en

so
r

D
at

a
[R

et
rie

ve
 =

]

A
ct

ua
to

r
C

om
m

an
d

[S
tim

ul
us

 =
]

S
en

so
r

C
om

m
an

d
[S

tim
ul

us
 =

]

S
en

so
r

V
al

ue
[R

es
po

ns
e

=
]

S
to

p
[S

ig
na

l =
]

R
es

um
e

[S
ig

na
l =

]

E
nd

[S
ig

na
l =

]

E
nd

ed
[S

ig
na

l =
]

Figure 52. Initial Decomposition of the Robot Controller System

515

Operator
Input
Panel
1.1

[Asynchronous
Device Input

Object =]

Robot
Controller

1.2
[Control

Object =]

End
Program

1.5
[Triggered

Synchronous
Function =]

Start
Program

1.4
[Triggered

Synchronous
Function =]

Change
Program

1.3
[Triggered

Synchronous
Function +]

Process
Program Ended

1.6
[Triggered

Synchronous
Function =]

Stop
Program

1.7
[Triggered

Synchronous
Function =]

Resume
Program

1.8
[Triggered

Synchronous
Function =]

Operator
Output
Panel
1.9

[Asynchronous
Device Output

Object =]

Program ID
[Data Store #]

Trigger
[Trigger =]

Trigger
[Trigger =]

Trigger
[Trigger =]

Trigger
[Trigger =]

Trigger
[Trigger =]

Trigger
[Trigger =]

Progam
Number

[Stimulus =]

[Store =]

[Retrieve =]

Start Program Command
[Stimulus =]

End On
[Stimulus =]

End
[Signal =]

Ended
Lights

[Stimulus =]

Stop
[Signal =]

Resume
[Signal =]

End
[Signal =]

Stop
[Signal =]

Ended
[Signal =]

Panel
Input

[Input =]
[Max. Rate .5 per sec *]

Control Panel
Buttons and

Switch Interrupt
[Interrupt =]

Panel Light
Signals

[Output =]

Control Panel
Lights Interrupt

[Interrupt =]
Max. Rate 1000

per sec. *]

Program
Select

[Signal =]

Run
[Signal =]

Manual Off,
Run On

[Stimulus =]

Manual Off,
Run On

[Stimulus =]
Stop Off,
Run On

[Stimulus =]

Figure 53. Decomposition of Process Robot Command

transformation, Process Robot Command, remains unannotated. Process Robot

Command is further decomposed in Figure 53. This decomposition is identical to that

provided by Gomaa. Each specification element on Figure 53 is annotated. The control

transformation, Robot Controller, encapsulates a state-transition diagram, Figure 54.

C.1.2 Generating the Design

After analyzing the specification, the designer decides to generate a design. Since

the designer is experienced, CODA can interact with the designer as necessary to request

guidance. The designer chooses first to structure tasks.

C.1.2.1 Structuring Tasks

Whenever a synchronous function within a data/control flow diagram connects

with transformations that have been allocated to separate tasks, CODA cannot determine

whether the synchronous function is more cohesive with some of these transformations

than with others. CODA asks the designer for advice in each such situation; but the

designer is not forced to provide guidance. In case of the robot controller system, CODA

consults the designer regarding the allocation of two data transformations.

One synchronous function, Process Motion Command, connects two

asynchronous functions, Interpret Program Statement and Generate Axis Command. No

clear information exists to allow CODA to decide that Process Motion Command should

be allocated together with either of the connected transformations; thus, CODA seeks

guidance from the designer. The designer, understanding the application-specific

relationships among these transformations, indicates that Process Motion Command

516

517

Powered
Off

Powering
Up

Manual

Terminating

Running

Suspended

Powered On

Powered Off

Successful
Power Up

Run

Trigger
Start

Program

End

Trigger
End

Program

Run

Trigger
Resume
Program

Stop

Trigger
Stop

Program

Ended

Trigger
Process
Program
Ended

Program Select

Trigger Change
Program

Figure 54. State-T
ransition D

iagram
 for R

obot C
ontroller

should be allocated together with Interpret Program Statement, rather than with Generate

Axis Command. Had the designer not known how to allocate Process Motion Command,

then CODA would generate a separate task for the transformation.

A second case where CODA seeks guidance from the designer involves the

synchronous function named Receive Acknowledgement. This function links three

adjacent transformations, Axis Controller, Generate Axis Command, and Interpret

Program Statement, that are each allocated to a distinct task. In this case, the designer

understands, and indicates, that Receive Acknowledgement should be allocated together

with Generate Axis Command. Absent guidance from the designer, CODA would simply

allocate Receive Acknowledgement to a separate task. Table 45 gives the results of

CODA’s task structuring including: the tasks created, the transformations allocated to

each task, and the criterion used in determining each allocation.

C.1.2.2 Structuring Modules

Next, the designer decides to structure the transformations and data stores into

information hiding modules. Here, the same two synchronous functions, Process Motion

Command and Receive Acknowledgement, which caused CODA to consult with the

designer during task structuring also require consultation during module structuring. The

synchronous functions in question each link two other functions that are already allocated

to two, distinct modules. For each of the functions in question, CODA cannot determine

518

Table 45. Task Structuring Decisions for Robot Controller, Version 1

Task Transformations Structuring Criterion

Axis Manager Generate Axis Command
Receive Acknowledgement

Asynchronous Internal Task
User-Specified Cohesion

Interpreter
Interpret Program Statement
Process Sensor Command
Process Actuator Command
Process Motion Command

Asynchronous Internal Task
Sequential Cohesion
Sequential Cohesion
User-Specified Cohesion

Robot Command Processor

Robot Controller
Resume Program
Stop Program
Process Program Ended
End Program
Start Program
Change Program

Control Task
Control Cohesion
Control Cohesion
Control Cohesion
Control Cohesion
Control Cohesion
Control Cohesion

Process Actuator Output Actuators Periodic Device I/O Task

Process Sensor Input Sensors Periodic Device I/O Task

Axis Controller Axis Controller Asynchronous Device I/O
 Task

Control Panel Input Handler Operator Input Panel Asynchronous Device I/O
 Task

Control Panel Output
 Handler

Operator Output Panel Asynchronous Device I/O
 Task

whether to allocate the function to one or the other of the two existing modules or to

create a new module for the function. CODA consults the experienced designer for

guidance. In this case, the designer indicates that the two transformations in question

should each be allocated to an existing module. The designer allocates Process Motion

519

Command to the same module as Interpret Program Statement and allocates Receive

Acknowledgement to the same module as Generate Axis Command. Had the designer

not provided help, then CODA would have simply generated a separate module for each

of the transformations in question. CODA makes the remainder of the module

structuring decisions without consulting the designer. Table 46 reports the results of the

module structuring for the robot controller system.

C.1.2.3 Integrating Tasks And Modules

Once both tasks and modules are structured, the designer decides to integrate the

two views. CODA makes these decisions without consulting the designer.

C.1.2.4 Defining Task Interfaces

Only the task interfaces remain to be defined. To complete the design, CODA

allocates the external interfaces and the event flows among the various tasks within the

design. Subsequently, CODA considers the data flows between pairs of tasks. For

several data flows, CODA cannot reach a definite decision regarding the form of message

passing to use. Since the designer is experienced, CODA seeks guidance. The designer

is free in each case to decline to assist CODA. Had the designer been inexperienced then

CODA would simply make default decisions to map the data flows to queued messages,

as is also the case when an experienced designer declines to provide guidance. The

following paragraphs discuss each case where CODA seeks advice from the designer to

map a data flow to a message.

520

Table 46. Module Structuring Decisions for Robot Controller, Version 1

Module Transformation/Data Store Structuring Criterion

Command Handler

Resume Program
Stop Program
Process Program Ended
End Program
Start Program

State-Dependent, Function
 Driver Module

Program ID Program ID
Change Program

Data-Abstraction Module
Update Operation of DAM

Sensor/Actuator
 Database

Sensor/Actuator Data
Process Actuator Command
Process Sensor Command

Data-Abstraction Module
Update Operation of DAM
Operation of DAM

Robot Controller Robot Controller State-Transition Module

Actuator Actuators Device-Interface Module

Sensor Sensors Device-Interface Module

Axis Axis Controller Device-Interface Module

Control Panel Input Operator Input Panel Device-Interface Module

Control Panel Output Operator Output Panel Device-Interface Module

Axis Manager Generate Axis Command
Receive Acknowledgement

Algorithm-Hiding Module
Designer Allocated Function

Interpreter Interpret Program Statement
Process Motion Command

Algorithm-Hiding Module
Designer Allocated Function

Robot Program Robot Program Data-Abstraction Module

521

The first data flow in question, Axis Block, goes from the Axis Manager to the

Axis Controller. CODA asks the designer whether the sender of an Axis Block must

synchronize with the receiver. The designer indicates that synchronization is necessary.

With this additional information, CODA allocates Axis Block to a tightly-coupled

message. In addition, CODA infers that Axis Acknowledgement, flowing in the reverse

direction between the same pair of tasks, can also be allocated to a tightly-coupled

message. The second set of data flows in question go from the Robot Command

Processor task to the Control Panel Output Handler task. These data flows represent

requests to light and extinguish various lamps on the control panel. In response to

queries from CODA, the designer indicates that no synchronization is needed between the

sender and receiver for these data flows. With this information, CODA allocates these

data flows to a queued message.

The two situations described in the previous paragraph, indicate the dilemma

faced by CODA when mapping data flows between tasks. Both the first data flow and

the second set of data flows arrive at a device-output task. In one case synchronization is

necessary, in the other case synchronization is not necessary. Each such decision requires

application-specific knowledge. CODA possesses only general, design knowledge, and,

therefore, must consult an experienced designer in the hope that the designer possesses

the missing, application-specific knowledge. Absent such assistance, CODA maps the

questionable data flows to queued messages.

522

Two additional variations of this same dilemma occur in the robot controller case

study. The Robot Command Processor task sends a data flow, Start Program Command,

to the Interpreter task. CODA cannot infer the synchronization needs for this data flow.

The designer is consulted, indicating that synchronization is needed. With this

knowledge, CODA allocates the data flow to a tightly-coupled message between the two

tasks. In the second instance, the task Interpreter sends a data flow, Motion Block, to the

Axis Manager task. Lacking sufficient knowledge to allocate this data flow to a message,

CODA consults with the designer who indicates that synchronization is not needed.

CODA then allocates the data flow to a queued message between the two tasks. CODA

makes an additional inference that the data flow, Motion Acknowledgements, going in

the reverse direction, can be allocated to the same type of message.

CODA is faced with one additional difficulty. The data/control flow diagram is

constructed in a form such that one transformation, Generate Axis Command, sends a

data flow, Axis Block, to a device object, Control Axis, and that device object sends

another data flow, Axis Acknowledgement, to a different transformation, Receive

Acknowledgement. Logically, one of those data flows, Receive Acknowledgement, is

sent as a response to the other, Axis Block; however, CODA cannot infer that fact

because during classification both data flows appeared to be independent. CODA

assumes, though, that when a device input/output object receives a tightly-coupled

message from a task and also sends a tightly-coupled message to the same task, the sent

message is a reply to the received message. When the designer is not experienced,

523

CODA makes such a decision automatically. When the designer is experienced, CODA

consults with the designer. The experienced designer is free to guide CODA or to decline

to give any guidance. If the designer provides guidance, then CODA acts on it. When

the designer provides no guidance, CODA takes the same, default action used with an

inexperienced designer. In the case study, the designer provides guidance that is

consistent with the default decision and CODA maps the message flowing from the

device input/output task as an answer to the message received by the task.

From this point, CODA finishes the task-interface definition by considering

whether priority messages might be needed and then by allocating queuing mechanisms,

as required, for tasks. The designer is then invited to review the new task-interface

elements and to rename them.

C.1.2.5 The Completed Design

The design generated by CODA, with guidance from an experienced designer, is

shown in Figure 55. This design is almost identical to the solution given by Gomaa in his

case study. The only structural difference appears with regard to module structuring.

Gomaa uses application-specific knowledge to merge two modules, Command Handler

and Program ID, from Figure 55, into a single module. CODA does not contain the

required knowledge, nor does CODA contain a rule for recognizing that an experienced

designer should be consulted on the question of merging these modules. Gomaa’s

solution appears superior on this point; however, the solution generated by CODA is also

reasonable. A minor difference appears with regard to the number of operations allocated

524

525

U
pd

at
e

A
ct

ua
to

r

R
ea

d
S

en
so

r

R
ea

d
A

ct
ua

to
r

U
pd

at
e

S
en

so
r

M
ot

io
n

B
lo

ck
Q

ue
ue

M
ot

io
n

A
ck

Q
ue

ue

M
ot

io
n

B
lo

ck

M
ot

io
n

B
lo

ck
A

ck

R
es

um
e,

S
to

p

A
xi

s
M

an
ag

er A
xi

s
A

ck
A

xi
s

B
lo

ck

A
xi

s
C

on
tr

ol
le

r

A
xi

s
M

an
ag

er

In
te

rp
re

te
r

E
nd

E
nd

ed

S
ta

rt
 P

ro
gr

am
In

te
rp

re
te

r
R

ob
ot

P
ro

gr
am

O
pe

ra
to

r
R

eq
ue

st
Q

ue
ue

O
pe

ra
to

r
R

eq
ue

st

P
an

el
O

ut
pu

t
R

eq
ue

st

R
ob

ot
 C

om
m

an
d

P
ro

ce
ss

or

C
om

m
an

d
H

an
dl

er

P
ro

gr
am

ID
R

ob
ot

C
on

tr
ol

le
r

P
ro

ce
ss

A
ct

ua
to

r
O

ut
pu

t

A
ct

ua
to

r
S

et
tin

gs

T
im

er
 E

xp
ira

tio
n

A
ct

ua
to

r

T
im

er
 E

xp
ira

tio
n

S
en

so
r

R
ea

di
ng

s

P
ro

ce
ss

S
en

so
r

In
pu

t
S

en
so

r

A
xi

s
In

te
rr

up
t

A
xi

s
S

et
tin

gs

A
xi

s
In

pu
ts

A
xi

s

C
on

tr
ol

 P
an

el
In

pu
t

H
an

dl
er

P
an

el
In

pu
t

C
on

tr
ol

 P
an

el
In

pu
t

In
te

rr
up

t

C
on

tr
ol

 P
an

el
In

pu
t

C
on

tr
ol

 P
an

el
O

ut
pu

t
In

te
rr

up
t

P
an

el
O

ut
pu

t

C
on

tr
ol

 P
an

el
O

ut
pu

t
H

an
dl

er

P
an

el
O

ut
pu

t
Q

ue
ue

C
on

tr
ol

 P
an

el
O

ut
pu

t

S
en

so
r/

A
ct

ua
to

r
D

at
ab

as
e

Figure 55. Generated Design for Robot Controller - Default Target Environment

to each module. CODA creates a larger number of operations for several of the modules.

This results from the strategy CODA uses to map specification elements to operations. A

human designer is expected to optimize these results, as desired.

C.1.3 A Design for Target Environments without Message Queues

To demonstrate another of CODA’s capabilities, the designer decides to reuse a

partially completed design. In this example, the designer reuses the design created

previously from the robot controller specification. At each stage in the design process,

the designer saved the state of the design. Now, in order to move the robot controller

system to a target environment that does not support message queuing, the designer first

copies a partially-completed, old design into a workspace for the new design and then

continues the new design from the preexisting state of the old design. For the current

prototype, the process of renaming and copying old designs is handled outside of CODA

by using file renaming and copying services from the hosting operating system. Prior to

reusing this design, the designer loads a new target environment description, NOQUEUE,

for a system that provides no message queuing services. When the designer next asks

CODA to generate a design, CODA detects that a design already exists in the workspace,

loads the design, and reports the state of the design to the designer. In this case study, the

old design already has an integrated task and module structure. This is exactly what the

designer needs because only the task interfaces must be changed to correspond to the new

target environment description. CODA then gives the designer an option to continue the

existing design or to start a new design. In this example, the designer continues the

526

existing design and CODA generates new task interfaces that correspond to requirements

of the new target environment. The completed design, built by reusing much of a

preexisting design, is shown in Figure 56.

The design is identical to that generated previously, see Figure 55, except that

each of the four message queues is now embedded inside a queue-control task. Access to

these queue-control tasks is made via tightly-coupled messages. A Send message submits

an element to be queued. A Receive Request asks for the next queued message. A

Receive Reply returns the next queued message.

C.2 Robot Controller System, Version 2

The data/control flow diagram for the robot controller system, as provided by

Gomaa, leads to several consultations between CODA and the designer because multiple,

data transformations, Generate Axis Command and Receive Acknowledgement, interact

with the Axis Controller device object. Recall, for example, that CODA consulted with

the designer concerning the allocation of Receive Acknowledgement to a task. Similar

consultation was needed during module structuring. Further, when task interfaces were

defined, CODA consulted the designer about both the type of and the relationship

between a pair of data flows, Axis Block and Axis Acknowledgement, exchanged

between the Axis Manager and Axis Controller tasks. These consultations could be

avoided by modifying the data/control flow diagram slightly so that a single

transformation subsumes both Generate Axis Command and Receive Acknowledge.

Such modifications bring the data/control flow diagram more closely in alignment with

527

528

U
pd

at
e

A
ct

ua
to

r

R
ea

d
S

en
so

r

R
ea

d
A

ct
ua

to
r

U
pd

at
e

S
en

so
r

R
es

um
e

,
S

to
p

A
xi

s
M

a
n

a
g

e
r

A
xi

s
A

ck
A

xi
s

B
lo

ck

A
xi

s
C

o
n

tr
o

lle
r

A
xi

s
M

a
n

a
g

e
r

In
te

rp
re

te
r

E
n

d

E
n

d
e

d

S
ta

rt
 P

ro
g

ra
m

In
te

rp
re

te
r

R
o

b
o

t
P

ro
g

ra
m

R
o

b
o

t
C

o
m

m
a

n
d

P
ro

ce
ss

or
C

om
m

an
d

H
an

dl
er

P
ro

gr
am

ID
R

ob
ot

C
on

tr
ol

le
r

P
ro

ce
ss

A
ct

ua
to

r
O

ut
pu

t

A
ct

ua
to

r
S

e
tt

in
gs

T
im

er
 E

xp
ira

tio
n

A
ct

ua
to

r

T
im

er
 E

xp
ira

tio
n

S
en

so
r

R
ea

di
ng

s

P
ro

ce
ss

S
en

so
r

In
pu

t
S

en
so

r

A
xi

s
In

te
rr

up
t

A
xi

s
S

e
tt

in
g

s

A
xi

s
In

pu
ts

A
xi

s

C
on

tr
ol

 P
an

el
In

pu
t

H
an

dl
er

P
an

el
In

pu
t

C
on

tr
ol

 P
an

el
In

pu
t

In
te

rr
up

t

C
on

tr
ol

 P
an

el
In

pu
t

C
on

tr
ol

 P
an

el
O

ut
pu

t
In

te
rr

up
t

P
an

el
O

ut
pu

t

C
on

tr
ol

 P
an

el
O

ut
pu

t
H

an
dl

er

C
on

tr
ol

 P
an

el
O

ut
pu

t

R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly

S
en

d

S
en

d R
ec

ei
ve

R
eq

ue
st

R
ec

ei
ve

R
ep

ly
M

ot
io

n
B

lo
ck

Q
ue

ue

M
ot

io
n

B
lo

ck
B

uf
fe

r

M
ot

io
n

R
eq

ue
st

M
ot

io
n

A
ck

B
uf

fe
r

M
ot

io
n

A
ck

Q
ue

ue

M
ot

io
n

R
ep

ly

S
en

d

R
ec

ei
ve

R
ep

ly
R

ec
ei

ve
R

eq
ue

st

O
pe

ra
to

r
R

eq
ue

st
B

uf
fe

r

O
pe

ra
to

r
R

eq
ue

st
Q

ue
ue

O
pe

ra
to

r
R

eq
ue

st
s

S
en

d

P
an

el
O

ut
pu

t
Q

ue
ue

R
ec

ei
ve

R
ep

ly
R

ec
ei

ve
R

eq
ue

st

P
an

el
 O

ut
pu

t
B

uf
fe

r

P
an

el
 O

ut
pu

t
R

eq
ue

st
s

S
en

so
r/

A
ct

ua
to

r
D

at
ab

as
e

Figure 56. Generated Design for Robot Controller - Target Environment Provides No
Message Queues

the COBRA restrictions on the use of RTSA notation. Figure 57 shows such a

modification to the original data/control flow diagram.

Notice that the data flow Axis Acknowledgement, previously classified as a

Stimulus, is now classified as a Response. CODA makes this classification without

consulting the designer. As a result, CODA later understands, also without consulting the

designer, how to map this interface to a tightly-coupled message with reply. Since the

Receive Acknowledgement transformation is no longer present, CODA does not need to

consult the designer about how to allocate that transformation. A designer used CODA to

generate a design, shown in Figure 58, from the modified data/control flow diagram. The

design is generated for the default target environment. Figure 58 reveals that the design

is identical to that obtained from the original version of the data/control flow diagram.

This comparison demonstrates that certain data/control flow diagrams, those constructed

in accordance with the COBRA restrictions on the use of RTSA notation, can be analyzed

more automatically by CODA than can other diagrams, that is, those constructed using

unrestricted RTSA notation. In general, any synchronous function, where that function

links with two or more transformations, might be allocated to the same task as one or

more connected transformations. CODA cannot determine the best allocation of a

synchronous function among multiple, connected transformations. A designer might be

able to determine the best allocation. For this reason, CODA consults a designer

whenever one of these situations arises. If the designer cannot help, then CODA makes a

default decision. For task allocation, the default decision creates a separate task for the

529

530

P
ro

ce
ss

R
ob

ot
C

om
m

an
d

1.
0

M
an

ag
e

A
xi

s
C

on
tr

ol
le

rs
4.

0
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

In
te

rp
re

t
P

ro
gr

am
S

ta
te

m
en

t
2.

0
[A

sy
nc

hr
on

ou
s

F
un

ct
io

n
=

]

P
ro

ce
ss

M
ot

io
n

C
om

m
an

d
3.

0
[S

yn
ch

ro
no

us
F

un
ct

io
n

+
] A
xi

s
C

on
tr

ol
le

r
5.

0
[A

sy
nc

hr
on

ou
s

D
ev

ic
e

IO
O

bj
ec

t =
]

P
ro

ce
ss

A
ct

ua
to

r
C

om
m

an
d

7.
0

[S
yn

ch
ro

no
us

F
un

ct
io

n
?]

A
ct

ua
to

rs
8.

0
[P

er
io

di
c

D
ev

ic
e

O
ut

pu
t O

bj
ec

t =
]

S
en

so
rs

9.
0

[P
er

io
di

c
D

ev
ic

e
In

pu
t O

bj
ec

t =
]

S
en

so
r/

A
ct

ua
to

r
D

at
a

[D
at

a
S

to
re

 #
]

R
ob

ot
P

ro
gr

am
[D

at
a

S
to

re
 #

]

P
ro

ce
ss

S
en

so
r

C
om

m
an

d
6.

0
[S

yn
ch

ro
no

us
F

un
ct

io
n

=
]

P
an

el
 I

np
ut

[In
pu

t =
]

[M
ax

. R
at

e
.5

pe
r

se
c.

 *
]

P
an

el
Li

gh
t

S
ig

na
ls

[O
ut

pu
t =

]

C
on

tr
ol

 P
an

el
B

ut
to

ns
 a

nd
S

w
itc

h
In

te
rr

up
t

[In
te

rr
up

t =
]

C
on

tr
ol

 P
an

el
Li

gh
ts

 I
nt

er
ru

pt
[In

te
rr

up
t =

]
[M

ax
. R

at
e

10
00

pe
r

se
c.

 *
]

S
ta

rt
 P

ro
gr

am
C

om
m

an
d

[S
tim

ul
us

 =
]

M
ot

io
n

C
om

m
an

d
[S

tim
ul

us
 =

]

M
ot

io
n

B
lo

ck
[S

tim
ul

us
 =

]

M
ot

io
n

A
ck

no
w

le
dg

em
en

t
[S

tim
ul

us
 =

]

A
xi

s
B

lo
ck

[S
tim

ul
us

 =
]

A
xi

s
A

ck
no

w
le

dg
em

en
t

[R
es

po
ns

e
=

]

A
xi

s
In

pu
t

[In
pu

t =
]

[M
ax

. R
at

e
10

0
pe

r
se

c.
 *

]

A
xi

s
S

et
tin

gs
[O

ut
pu

t =
]

A
xi

s
M

ot
or

 I
nt

er
ru

pt
[In

te
rr

up
t =

]

S
en

so
r

T
im

er
[T

im
er

 =
]

[P
er

io
d

.1
 s

ec
s.

 *
]

S
en

so
r

R
ea

di
ng

s
[In

pu
t =

]

S
en

so
r

D
at

a
[S

to
re

 =
]

A
ct

ua
to

r
D

at
a

[R
et

rie
ve

 =
]

A
ct

ua
to

r
S

et
tin

gs
[O

ut
pu

t =
]

A
ct

ua
to

r
T

im
er

[T
im

er
 =

]
[P

er
io

d
.8

 s
ec

s.
 *

]
P

ro
gr

am
S

ta
te

m
en

t
[R

et
rie

ve
 =

]

A
ct

ua
to

r
D

at
a

[S
to

re
 =

]

S
en

so
r

D
at

a
[R

et
rie

ve
 =

]

A
ct

ua
to

r
C

om
m

an
d

[S
tim

ul
us

 =
]

S
en

so
r

C
om

m
an

d
[S

tim
ul

us
 =

]

S
en

so
r

V
al

ue
[R

es
po

ns
e

=
]

S
to

p
[S

ig
na

l =
]

R
es

um
e

[S
ig

na
l =

]

E
nd

[S
ig

na
l =

]

E
nd

ed
[S

ig
na

l =
]

Figure 57. A Modified Data/Control Flow Diagram for the Robot Controller

531

U
pd

at
e

A
ct

ua
to

r

R
ea

d
S

en
so

r

R
ea

d
A

ct
ua

to
r

U
pd

at
e

S
en

so
r

M
ot

io
n

B
lo

ck
s

M
ot

io
n

B
lo

ck
A

ck
s

M
ot

io
n

R
eq

ue
st

M
ot

io
n

A
ck

R
es

um
e,

S
to

p

M
an

ag
e

A
xi

s
C

on
tr

ol
le

rs A
xi

s
R

ep
ly

A
xi

s
R

eq
ue

st

C
on

tr
ol

 A
xi

s

M
an

ag
e

A
xi

s
C

on
tr

ol
le

rs
A

lo
gr

ith
m

In
te

rp
re

t
P

ro
gr

am
E

nd

E
nd

ed

S
ta

rt
 P

ro
gr

am
P

ro
gr

am
In

te
rp

re
te

r

R
ob

ot
P

ro
gr

am

O
pe

ra
to

r
R

eq
ue

st
s

O
pe

ra
to

r
R

eq
ue

st

P
an

el
O

ut
pu

t
R

eq
ue

st

P
ro

ce
ss

 R
ob

ot
 C

om
m

an
d

C
om

m
an

d
H

an
dl

er

P
ro

gr
am

ID
R

ob
ot

C
on

tr
ol

le
r

P
ro

ce
ss

A
ct

ua
to

r
O

ut
pu

t

A
ct

ua
to

r
S

et
tin

gs

T
im

er
 E

xp
ira

tio
n

A
ct

ua
to

r

T
im

er
 E

xp
ira

tio
n

S
en

so
r

R
ea

di
ng

s

P
ro

ce
ss

S
en

so
r

In
pu

t
S

en
so

r

A
xi

s
In

te
rr

up
t

A
xi

s
O

ut
pu

t

A
xi

s
In

pu
t

A
xi

s

P
ro

ce
ss

 P
an

el
In

pu
t

P
an

el
In

pu
t

P
an

el
 I

np
ut

In
te

rr
up

t

C
on

tr
ol

 P
an

el
In

pu
t

P
an

el
 O

ut
pu

t
In

te
rr

up
t

P
an

el
O

ut
pu

t

P
ro

ce
ss

 P
an

el
O

ut
pu

t

P
an

el
O

ut
pu

t
R

eq
ue

st
s

C
on

tr
ol

 P
an

el
O

ut
pu

t

S
en

so
r/

A
ct

ua
to

r
D

at
ab

as
e

Figure 58. Generated Design for Robot Controller System, Version 2 - Default Target
Environment

synchronous function in question. Similarly, for module allocation, the default decision

allocates a separate module for the synchronous function in doubt. These decisions,

while not incorrect, seldom lead to an efficient design.

532

